Bi-directional in-line deflagration flame arrester KITO® RG-Def-IIB3-...-1.2

KITO® RG-Def-IIB3-...-1.2-T (-TT)

G	D	L	L1	~ H	kg
1/8", 1/4", 3/8"	90	152	-	-	4,0
1/2", 3/4", 1"			257	290	
1 ¼", 1 ½", 2"	120	162	-	315	6,5

Dimensions in mm / weight without thermocouple

performance curves: H 0.42 N

Design subject to change Standard design

housing : steel, stainless steel mat. no. 1.4571

: <u>HD 3822</u>, PTFE gasket KITO[®] flame arrester

element

: completely interchangeable

KITO® casing / grid : stainless steel mat. no. <u>1.4308 / 1.4310</u>,

1.4408 / 1.4571

bolts/nuts : <u>A2</u>, A4

temperature sensor : PT 100 (option); connection 1/4"

- not in connection G 1/8" - 3/8" -

connection : thread connection

Example for orders:

KITO® RG-Def-IIB3-1 1/2"-1.2-T (design with thermo couple element)

Application

For installation into pipes to the protection of vessels and components against deflagration of flammable liquids and gases.

Approved for all substances of explosion groups IIA1 to IIB3 with a maximum experimental safe gap (MESG) ≥ 0.65 mm.

Bi-directionally working in pipes, whereby an operating pressure of 1.2 bar abs. and an operating temperature of 60°C must not be exceeded. The distance between a potential ignition source and the flame arrester must not exceed 50 times the inner pipe diameter.

All sizes are tested against "stabilized burning"

and withstand this up to a max. burn time BT = 6.0 min.

To detect a "stabilized burning" a thermocouple must be installed at each endangered side.

Mounting is acceptable in any position, in horizontal as well as in vertical pipes.

Bi-directional in-line deflagration flame arrester KITO RG-Def-IIB3-...-1.2 KITO RG-Def-IIB3-...-1.2-T (-TT) H 42 N

The flow capacity V refers to a density of air with $\rho = 1.29$ kg/m³ at T = 273 K and a pressure of p = 1.013 mbar. The flow capacity for gases with different densities can be calculated sufficiently accurate by the following approximation equation:

$$\dot{\mathbf{V}} = \dot{\mathbf{V}}_{b} \cdot \sqrt{\frac{\rho_{b}}{1.29}} \ or \qquad \dot{\mathbf{V}}_{b} = \dot{\mathbf{V}} \cdot \sqrt{\frac{1.29}{\rho_{b}}}$$

Design subject to change