
Pressure Relief Valve KITO® DS/o-1

Without EC certificate and C € -designation

DN		D	Н		kg	setting* (mbar)	
DIN	ANSI	U	DIN	ANSI		min.	max.
25 PN 40	1"	220				200	- 350
50 PN 16	2"	220	490	509	57		
80 PN 16	3"	260					
100 PN 16	4"	260					
125 PN 16	5"	380				150	
150 PN 16	6"	380					
200 PN 10	8"	450					
250 PN 10	10"	600	1238	1272	206		

Dimensions in mm

Design subject to change Standard design

housing : steel, stainless steel mat. no. 1.4571

valve pallet : spring loaded

valve seat and spindle : stainless steel 1.4571 valve seals : metal sealing

spring loaded parts : stainless steel 1.4571 compression spring : stainless steel 1.4301

weather hood : <u>stainless steel mat. no. 1.4301</u>, 1.4571 protective screen : PA6 (> DN 125 <u>stainless steel mat.</u>

no. 1.4301, 1.4571)

flange connection : DIN EN 1092-1 form B1, ANSI 150 lbs. RF

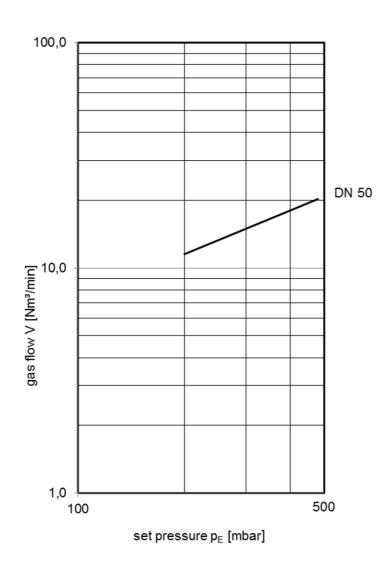
Application

As venting device for installation on storage tanks with a PRV to protect against hazardous excess pressure but minimize the loss of gas/vapours.

This device does not protect against the hazard of explosion or stabilized burning.

performance curves: C 0.8.3 N

 $^{^{\}star}$ minor settings see type sheet D 11 N, higher settings on request.



Flow capacity V based on air of a density ρ = 1.29 kg/m³ at T = 273 K and atmospheric pressure p = 1.013 mbar. For other gases the flow can be approximately calculated by

$$\overset{\cdot}{V}_{40\%} = \overset{\cdot}{V}_b \cdot \sqrt{\frac{\rho_b}{1.29}}$$

$$\dot{V}_b = \dot{V}_{40\%} \cdot \sqrt{\frac{1.29}{\rho_b}}$$

Air flow capacity at 40% above valve setting.

Design subject to change